会议专题

A Distance Sorting Based Multi-Objective Particle Swarm Optimizer and Its Applications

Multi-objective particle swarm optimization (MOPSO) is an optimization technique inspired by bird flocking, which has been steadily gaining attention from the research community because of its high convergence speed. On the other hand, in the face of increasing complexity and dimensionality of todays application coupled with its tendency of premature convergence due to the high convergence speeds, there is a need to improve the efficiency and effectiveness of MOPSO. A novel crowding distance sorting based particle swarm optimizer is proposed (called DSMOPSO). It includes three major improvements: (I) With the elitism strategy, the evolution of the external population is achieved based on individuals crowding distance sorting by descending order, to delete the redundant individuals in the crowded area; (II) The update of the global optimum is performed by selecting individuals with a relatively bigger crowding distance, which leading particles evolve to the disperse region; (III) A small ratio mutation is introduced to the inner swarm to enhance the global searching capability. Experiment results on the design of single-stage air compressor show that DSMOPSO handling problems with two and three objectives efficiently, and outperforms SPEA2 in the convergence and diversity of the Pareto front.

multi-objective particle swarm optimization elitism strategy crowding distance sorting air compressor design

Zhongkai Li Zhencai Zhu Shanzeng Liu Zhongbin Wang

School of Mechatronics Engineering,China University of Mining and Technology, Xuzhou, China

国际会议

International Conference on Life System Modeling and Simulation,and International Conference on Intelligent Computing for Sustainable Energy and Environment(2010生命系统建模与仿真国际会议暨m2010可持续能源与环境智能计算国际会议)

无锡

英文

30-36

2010-09-17(万方平台首次上网日期,不代表论文的发表时间)