会议专题

Effects of Temperature Distribution and Level on Heat Transfer on a Rotating Free Disk

In gas turbine engines, with the existence of the intense forced convection and significant buoyancy effects, temperature distribution and level on turbine or compressor disks affect the heat transfer characteristics strongly. In this paper, numerical simulations were performed to analyze these influences for a free disk, with the laminar and turbulent flow respectively. The influences of temperature distribution on the heat transfer were observed by using incompressible cooling air, and temperature profiles of nth order monomial and polynomial were assumed on the disk. The analysis revealed that the heat transfer for two flow states on the free disk is determined by the exponent n of the monomial profile when specifying the rotating Reynolds number; for an arbitrary polynomial profile, the local Nusselt number can be deduced from results of monomial profiles. To study the effects of temperature level on heat transfer singly, monomial profiles were used and the local Nusselt number of compressible and incompressible cooling air were compared. And both for two flow states, the following conclusions could be drawn: The relative difference of local Nusselt number is mainly controlled by nondimensional local temperature difference, and almost independent of the monomials coefficient C, exponent n and the rotating Reynolds Number. Subsequently, a correction method for heat transfer of the free disk is presented and verified computationally, with which the local Nusselt number, obtained with a uniform and low temperature profile, can be revised by arbitrary distribution and high temperature magnitude.

thermal boundary condition free disk heat transfer

ZHAO Xi XU Guoqiang TAO Zhi LUO Xiang

School of Jet Propulsion BUAA Beijing, China

国际会议

The 3rd International Symposium on Jet Propulsion and Power Engineering(第三届喷气推进与动力工程国际会议 ISJPPE)

南京

英文

279-286

2010-09-13(万方平台首次上网日期,不代表论文的发表时间)