An Investigation to Oil Spray Characteristics under Cross Flow Environment of Internal Air System
For investigating the oil spray characteristics in internal air systems of gas turbine engines, a test rig has been built for simulating the oil leaking jet flow when a fracture takes place on those high flowrate oil supply pipes. With the air flow velocity of cross flow up to 200 m/s, oil sprays with the injection pressure up to 7 bar were provided by an purpose-built injection system. Various injector orifices with different shapes and dimensions were prepared for considering different fracture situation though only one circular nozzle was examined in the current study. While Laser Imaging was used for examining the jet behaviour and flow field with interaction between the oil spray and the cross flow, Phase Doppler Anemometry (PDA) was employed for measuring the size and velocity distributions of oil droplets. Measurements through different planes of the spray were conducted for exploring the droplet break-up and oil-air mixing process. Results showed that the high velocity of cross flow made significant enhancement for both the jet break-up and droplet break-up, in particular those droplets with bigger size, while the momentum flux ratio has very unapparent influence on variation of droplet size distributions. With the penetration of the oil spray, velocity differences between the cross flow and droplets gradually become smaller and this tends to reduce the further droplet break-up at the downstream area. Meanwhile, relevant data also demonstrated that the evaporation of different size droplets was accelerated with high velocity cross flows.
Nick Regan Zhijun Peng Nick Atkins Chris Long Peter Childs
School of Engineering and Design, University of Sussex, UK
国际会议
The 3rd International Symposium on Jet Propulsion and Power Engineering(第三届喷气推进与动力工程国际会议 ISJPPE)
南京
英文
421-428
2010-09-13(万方平台首次上网日期,不代表论文的发表时间)