Detection of Brain Functional-Connectivity Difference in Post-stroke Patients Using Group-Level Covariance Modeling
Functional brain connectivity, as revealed through distant correlations in the signals measured by functional Magnetic Resonance Imaging (fMRI), is a promising source of biomarkers of brain pathologies. However, establishing and using diagnostic markers requires probabilistic inter-subject comparisons. Principled comparison of functional-connectivity structures is still a challenging issue. We give a new matrix-variate probabilistic model suitable for inter-subject comparison of functional connectivity matrices on the manifold of Symmetric Positive Definite (SPD) matrices.We show that this model leads to a new algorithm for principled comparison of connectivity coefficients between pairs of regions.We apply this model to comparing separately post-stroke patients to a group of healthy controls. We find neurologically-relevant connection differences and show that our model is more sensitive that the standard procedure. To the best of our knowledge, these results are the first report of functional connectivity differences between a singlepatient and a group and thus establish an important step toward using functional connectivity as a diagnostic tool.
Gael Varoquaux Flore Baronnet Andreas Kleinschmidt Pierre Fillard Bertrand Thirion
Parietal project-team, INRIA Saclay-ile de France INSERM, U562, CEA/Neurospin bat 145, 91191 Gif-Sur-Yvette, France
国际会议
北京
英文
200-208
2010-09-01(万方平台首次上网日期,不代表论文的发表时间)