Spatially Regularized SVM for the Detection of Brain Areas Associated with Stroke Outcome
This paper introduces a new method to detect group differences in brain images based on spatially regularized support vector machines (SVM). First, we propose to spatially regularize the SVM using a graph encoding the voxels proximity. Two examples of regularization graphs are provided. Significant differences between two populations are detected using statistical tests on the margins of the SVM.We first tested our method on synthetic examples. We then applied it to 72 stroke patients to detect brain areas associated with motor outcome at 90 days, based on diffusion-weighted images acquired at the acute stage (one day delay). The proposed method showed that poor motor outcome is associated to changes in the corticospinal bundle and white matter tracts originating from the premotor cortex. Standard mass univariate analyses failed to detect any difference.
Remi Cuingnet Charlotte Rosso Stephane Lehericy Didier Dormont Habib Benali Yves Samson Olivier Colliot
Universite Pierre et Marie Curie-Paris 6, CNRS UMR 7225, Inserm UMR S 975,Centre de Recherche de lI Universit′e Pierre et Marie Curie-Paris 6, CNRS UMR 7225, Inserm UMR S 975,Centre de Recherche de l’ Universite Pierre et Marie Curie-Paris 6, CNRS UMR 7225, Inserm UMR S 975,Centre de Recherche de l’I Inserm, UMR S 678, LIF, Paris, France Universite Pierre et Marie Curie-Paris 6, CNRS UMR 7225, Inserm UMR S 975,Centre de Recherche de l’I Universite Pierre et Marie Curie-Paris 6, CNRS UMR 7225, Inserm UMR S 975, Centre de Recherche de l’
国际会议
北京
英文
316-323
2010-09-01(万方平台首次上网日期,不代表论文的发表时间)