Change Detection in Diffusion MRI Using Multivariate Statistical Testing on Tensors
This paper presents a longitudinal change detection framework for detecting relevant modifications in diffusion MRI, with application to Multiple Sclerosis (MS). The proposed method is based on multivariate statistical testings which were initially introduced for tensor population comparison. We use these methods in the context of longitudinal change detection by considering several strategies to build sets of tensors characterizing the variability of each voxel. These testing tools have been considered either for the comparison of tensor eigenvalues or eigenvectors, thus enabling to differentiate orientation and diffusivity changes. Results on simulated MS lesion evolutions and on real data are presented. Interestingly, experiments on an MS patient highlight the ability of the proposed approach to detect changes in non evolving lesions (according to conventional MRI) and around lesions (in the normal appearing white matter), which might open promising perspectives for the follow-up of the MS pathology
Antoine Grigis Vincent Noblet Felix Renard Fabrice Heitz Jean-Paul Armspach Lucien Rumbach
University of Strasbourg, CNRS, UMR 7005, LSIIT, FranceUniversity of Strasbourg, CNRS, FRE 3280, LIN University of Strasbourg, CNRS, UMR 7005, LSIIT, France University of Strasbourg, CNRS, FRE 3280, LINC-IPB, France
国际会议
北京
英文
117-124
2010-09-01(万方平台首次上网日期,不代表论文的发表时间)