The Reseaches on Mixtures of Kernels Function Initial Parameters Selection on the Synthetic Evaluation Function of KPCA
This paper study on the mixtures of kernels function initial parameters selection in the synthetic evaluation function of kernel principal component analysis (KPCA) based on the samples and kernel principal component contribution rate adaptive. It provides an effective method to overcome the shortcomings of kernels parameters difficult to selection when KPCA is applied to synthetic evaluation based on multiple indicators.
mixtures of kernels function KPCA synthetic evaluation
TAN Yili ZHAO Ye WAN Xinghuo
School of Science, Hebei Polytechnic University, Tangshan, P.R.China, 063009 School of Science, Shijiazhuang Tiedao University, Shijiazhuang, P.R.China, 050043
国际会议
威海
英文
641-644
2010-07-24(万方平台首次上网日期,不代表论文的发表时间)