会议专题

The Hybrid Prediction Model of CNY/USD Exchange Rate Based on Wavelet and Support Vector Regression

Since the implementation of the new mechanism of Renminbi exchange rate from 2005, the CNY/USD exchange rate fluctuation range has become more greater than before. Therefore, it is very important to control CNY/USD exchange rate risk via prediction. This paper is motivated by evidence that different prediction models can complement each other in approximating data sets, and presents a hybrid prediction model of support vector machines (SVMs) and discrete wavelet transform (DWT) to solve the exchange rate prediction problems. The presented model greatly improves the prediction performance of the individual SVMs models in prediction exchange rate. In the experiment, the performance of the hybrid prediction model is evaluated using the CNY/USD exchange rate market data. Experimental results indicate that the hybrid prediction model outperforms the individual SVMs models in terms of root mean square error (RMSE) metric. This hybrid prediction model yields better prediction result than the individual SVMs models.

Fan-Yong Liu

School of Finance and Economics Hangzhou Dianzi University Xiasha Higher Education Zone Hangzhou Zhejiang 310018 P.R.China

国际会议

The 2nd IEEE International Conference on Advanced Computer Control(第二届先进计算机控制国际会议 ICACC 2010)

沈阳

英文

561-565

2010-03-27(万方平台首次上网日期,不代表论文的发表时间)