Analysis of A Delayed SIR Epidemic Model
An SIR epidemic model with incubation time and saturated incidence rate is formulated, where the susceptibles are assumed to satisfy the logistic equation and the incidence term is of saturated form with the infective. Threshold quantity R0 is derived which determines whether the disease dies out or remains endemic. If R0 < 1, the disease-free equilibrium is globally asymptotically stable and the disease eventually disappears. If R0 > 1, there will be an endemic and the disease is permanent if it initially exists.
SIR model time delay global stability permanence
Jin-Zhu Zhang Jian-Jun Wang Tie-Xiong Su Zhen Jin
Department of Mathematics Taiyuan Institute of Technology Taiyuan 030008, China Institute of militar Department of Mathematics Taiyuan Institute of Technology Taiyuan 030008, China Institute of military equipment and technologies North University of China Taiyuan 030051, China Department of Mathematics North University of China Taiyuan 030051, China
国际会议
International Conference on Computational Aspects of Social Networks(国际社会网络计算会议 CASoN 2010)
太原
英文
192-195
2010-09-26(万方平台首次上网日期,不代表论文的发表时间)