On the localization transition in symmetric random matrices
We study the behaviour of the inverse participation ratio and the localization transition in infinitely large random matrices through I lie cavity method. Results are shown for two ensembles of random inatrices: Laplacian matrices on sparse random graphs and fully-connected Levy matrices. We derive a critical line separating localized from extended states in the case of Levy matrices. Comparison between theoretical results and diagonalization of finite random matrices is shown.
F. L. Metz I. Neri D. Bolle
Instituut voor Theomtisclie Fynica. Katholieke Univemiteit Lutiven, Celestijnenlaan 200D, B-3001 Leuven. Belgium
国际会议
International Workshop on Statistical Physics and Computer Sciences(统计物理与计算机科学交叉研究国际研讨会 )
北京
英文
93-102
2010-07-08(万方平台首次上网日期,不代表论文的发表时间)