Bioinformatics Data Mining Using Artificial Immune Systems and Neural Networks
Bioinformatics is a data-intensive field of research and development. The purpose of bioinformatics data mining is to discover the relationships and patterns in large databases to provide useful information for biomedical analysis and diagnosis. In this research, algorithms based on artificial immune systems (AIS) and artificial neural networks (ANN) are employed for bioinformatics data mining. Three different variations of the real-valued negative selection algorithm and a multi-layer feedforward neural network model are discussed, tested and compared via computer simulations. It is shown that the ANN model yields the best overall result while the AIS algorithm is advantageous when only the “normal (or “self) data is available.
Artificial immune systems Real-valued negative selection algorithm Data mining Artificial neural networks
Shane Dixon Xiao-Hua Yu
Department of Electrical Engineering California Polytechnic State University San Luis Obispo,CA 93407,USA
国际会议
2010 IEEE信息与自动化国际会议(ICIA 2010)
哈尔滨
英文
1-6
2010-06-20(万方平台首次上网日期,不代表论文的发表时间)