A Multiple Object Tracking Method Using Kalman Filter
It is important to maintain the identity of multiple targets while tracking them in some applications such as behavior understanding. However, unsatisfying tracking results may be produced due to different real-time conditions. These conditions include: inter-object occlusion, occlusion of the ocjects by background obstacles, splits and merges, which are observed when objects are being tracked in real-time. In this paper, an algorithm of feature-based using Kalman filter motion to handle multiple objects tracking is proposed. The system is fully automatic and requires no manual input of any kind for initialization of tracking. Through establishing Kalman filter motion model with the features centroid and area of moving objects in a single fixed camera monitoring scene, using information obtained by detection to judge whether merge or split occurred, the calculation of the cost function can be used to solve the problems of correspondence after split happened. The algorithm proposed is validated on human and vehicle image sequence algorithm proposed achieve efficient tracking of multiple moving objects under the confusing situations.
Kalam filter motion model multi-object tracking Occlusion
Xin Li Kejun Wang Wei Wang Yang Li
Engineering Training Center of HarBin Engineering University Harbin,Heilongjiang Province,150001,Chi Automation College of Harbin Engneering University Harbin,Heilongjiang Province,150001,China
国际会议
2010 IEEE信息与自动化国际会议(ICIA 2010)
哈尔滨
英文
1-5
2010-06-20(万方平台首次上网日期,不代表论文的发表时间)