Fabrication of mesoporous N-TiO2 membrane and its spectral characteristics
Ceramic ultrafiltration membrane, pore size from 2 to 50nm, is of growing interest in separation and purification processes because of their higher chemical, thermal and mechanical stability compared to organic membranes. TiO2 mesoporous membranes have gained tremendous popularity due to their photocatalytic activity and because they possess high water flux and chemical resistance. In recent years, visible-light-induced nitrogen-doped titanium dioxide (N-TiO2) materials have been attracted extensive attention. We synthesized asymmetric N-TiO2 membrane based on this material via sol-gel method, in which titanium tetrabutoxide was used as Ti-precursor and formamide as nitrogen resource. A a-alumina support with macropores was used and its diameter, thickness and pore size were 28.5 mm, 2.2 mm and 0.10μm, respectively. The alumina supports were pretreated using PVA to prevent permeation of sol into the supports. Sol was coated on this treated supports, and then formed gel under 60℃. The resulting membrane posseses a pore size of 4nm and its pure water permeability is 3.3L/(m2·h·bar). The influences of formamide on the microstructrue and the spectral characteristics were also analyzed by means of BET, UV-vis. As indicated by results, when the molar ratios of formamide and titanium terabutoxide were near 4, the materials had excellent visible light absorption, the absorption band was shifted to about 545nm and the band gap was reduced to 2.65eV. The band gap was 0.55eV less than that of pure TiO2. The membrane has potential application in purifing of micro-polluted surface water under visible-light environment.
Membrane formamide titanium dioxide nitrogen-doped visible light
ZHOU zhi WANG Wei-gang HUANG Wei JING Wen-heng XING Wei-hong
State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, Jiangsu, China
国际会议
青岛
英文
791-794
2009-10-09(万方平台首次上网日期,不代表论文的发表时间)