会议专题

Anti-biofouling Property of a Novel Cross-linkable Copolymer Grafted a Short Semifluorinated Aromatic Side Chain

Biofouling on underwater engineered structures, especially on ship hulls, results in increased operational and maintenance costs. The traditional methods of protecting marine structures have been the use of toxic antifoulants, such as lead, mercury and tributyltin compounds (TBT). Such heavy metals have proven to be effective in deed, but severe shellfish deformities and the bioaccumulation of heavy metals in ducks, seals and fish lead to the global ban of toxic antifoulants. Therefore, our antifouling strategy is to develop minimally adhesive, mechanically stable and nontoxic fouling release coatings which degrade fouling an organism’s ability to adhere to surfaces. Herein we report on the synthesis and characterization of a novel cross-linkable copolymer grafted a semifluorinated aromatic side chain which was prepared by copolymerization with methyl methacrylate and glycidyl methacrylate. Bulk and surface properties were assessed through 1H NMR and 19F NMR spectra, contact angle measurement. The cross-linkable copolymer was rationally designed for use as coating to prevent marine bioufouling. Apart from the use of methyl methacrylate and glycidyl methacrylate which contained epoxide ring serving as a cross-linked group, the other important monomer―a semifluorinated group substituted styrene monomer was selected to construct a low surface energy material. Finally, the antifouling potential of the designed polymer surface was evaluated employing the fouling diatom itzschia in our laboratory. Experimental results indicated the combination of the low surface energy group (semifluorinated segments) and linker group (epoxide ring) allowed the cross-linkable polymer surface possessing a little better antifouling properties than that a standard poly(dimethyl siloxane) (PDMS) coating.

Cross-linkable copolymer Semifluorinated aromatic side chain Antifouling

Shijun Feng Qiang Wang Yu Gao Yangen Huang

College of Chemistry, Chemical Engineering and Biotechnology, and State Key Laboratory for Modificat College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Lu, Qingdao 2

国际会议

第二届多功能材料与结构国际会议

青岛

英文

973-976

2009-10-09(万方平台首次上网日期,不代表论文的发表时间)