Efficient Template-based Path Imitation by Invariant Feature Mapping
We propose a novel approach for robot movement imitation that is suitable for robotic arm movement in tasks such as reaching and grasping. This algorithm selects a previously observed path demonstrated by an agent and generates a path in a novel situation based on pairwise mapping of invariant feature locations present in both the demonstrated and the new scenes using minimum distortion and minimum energy strategies. This One-Shot Learning algorithm is capable of not only mapping simple pointto- point paths but also adapting to more complex tasks such as involvement of forced waypoints. As compared to traditional methodologies, our work does not require extensive training for generalisation as well as expensive run-time computation for accuracy. Cross-validation statistics of grasping experiments show great similarity between the paths produced by human subjects and the proposed algorithm.
movement imitation path planning grasping learning by imitation
Yan Wu Yiannis Demiris
Department of Electrical & Electronic Engineering,Imperial College London,United Kingdom
国际会议
2009 IEEE International Conference on Robotics and Biomimetics(2009 IEEE 机器人与仿生技术国际会议 ROBIO 2009)
桂林
英文
913-918
2009-12-19(万方平台首次上网日期,不代表论文的发表时间)