Two-dimensional Locomotive Permanent magnet using Electromagnetic Actuation system with Two Pairs Stationary Coils
Two-dimensional electromagnetic actuation system (EMA) was developed to manipulate microrobot for the intravascular therapy. This system consists of two pairs of Helmholtz coils and Maxwell coils and a cylindrical type permanent magnet is used as a microrobot. It is verified that the microrobot can move without power line using electromagnetic field. We analyzed this locomotive mechanism of the microrobot using two-dimensional EMA system theoretically and validated the performance of the mechanism by various experiments. The position of the microrobot which is inside of region of interest (ROI) could be recognized by CCD camera. This position information is used for feedback signal, a simple proportional (P) controller is used for this EMA system. The final goal of this paper is to control the micro robot position precisely. Firstly, we demonstrate the autonomous locomotion of the microrobot along a predefined desired path. Secondly, we adopt an applicable joystick system as a master which the operators can use in a real operation and realize the path control of the microrobot.
Jongho Choi Hyunchul Choi Kyoungrae Cha Jong-oh Park Sukho Park
Dept.of Mechanical Engineering,Chonnam University,Gwangju,500-757,Korea
国际会议
2009 IEEE International Conference on Robotics and Biomimetics(2009 IEEE 机器人与仿生技术国际会议 ROBIO 2009)
桂林
英文
1166-1171
2009-12-19(万方平台首次上网日期,不代表论文的发表时间)