会议专题

Analysis of the mechanical behaviors of rock masses by using a numerical method

One of the difficulties in describing the rock mass behavior is assigning the appropriate constitutive model. This limitation may be overcome with the progress in discrete element software such as PFC, which does not need the user to prescribe a constitutive model for rock mass. In this paper, the model size of 30m × 30m was analyzed by using the fracture geometry from two tunnel sites. PFC simulations were carried out to examine the mechanical behavior of rock masses. From the numerical tests, it can be concluded that as the number of joint sets increased, the values of mechanical properties of rock masses were decreased to about 50% of those values of rock mass without joints. And the behavior of the rock mass changed from brittle to perfectly plastic with increase in the number of joints. Also the values of Young’s modulus, Poisson’s ratio and peak strength are almost similar from PFC model and empirical methods. As expected, the presence of joints had a pronounced effect on mechanical properties of the rock mass. More importantly, the mechanical response of the PFC model was not determined by a user specified constitutive model. So the discrete element model gives very contrasting results compared to the traditional model.

E.S.Park H.S.Shin S.H.Bae

Korea Institute of Geoscience & Mineral Resources, Daejeon Geogeny Consultants, Seoul

国际会议

2009年岩石力学国际研讨会

香港

英文

1-5

2009-05-19(万方平台首次上网日期,不代表论文的发表时间)