PLS Regression with Functional Predictor and Missing Data
Time-average approximation and principal component analysis of the stochastic process underlying the functional data are the main ingredients for adapting NIPALS algorithm to estimate missing data in the functional context. The influence of the amount of missing data in the estimation of linear regression models is studied using the PLS method. A simulation study illustrates our methodology.
functional data missing data PLS functional regression models
Cristian Preda Gilbert Saporta M.H. Ben Hadj Mbarek
University des Sciences et Technologies de Lille 59650 Villeneuve dAscq, France Chaire de Statistique appliquee, CEDRIC, CNAM, 292 Rue Saint Martin, 75141 Paris Cedex 03, France Institut Superieur de Gestion de Sousse, Tunisie
国际会议
The 6th International Conference on Partial Least Squares and Related Methods(第六届偏最小二乘及相关方法国际会议)
北京
英文
17-22
2009-09-04(万方平台首次上网日期,不代表论文的发表时间)