Design and Fabrication of Magnetic Nanoparticles for Targeted Drug Delivery and Imaging

Treating malignant brain tumors remains a formidable challenge due to the difficulty in differentiating between tumors and healthy brain tissue, intrinsic cellular resistance of tumors to drugs, and the blood brain barrier (BBB) preventing the passage of drugs and contrast agents. Targeted delivery of contrast agents and therapeutic payloads using nanoparticles is a promising approach that may overcome these barriers. Our research aims to develop multifunctional nanoparticle systems that can serve as imaging markers, targeting agents, and drug delivery vehicles for non-invasive diagnosis, treatment, and therapy-response monitoring of brain cancers. In the past few years, we have developed several multifunctional nanoparticle systems that demonstrate an ability to specifically target brain tumors across the BBB, and exhibit innocuous toxicity profiles and sustained retention in tumors, as established through uptake assays, in vivo magnetic resonance and biophotonic imaging, and histological and biodistribution analyses. A typical multifunctional nanoparticle system in our design comprises a superparamagnetic iron oxide core that enables magnetic resonance imaging, a biodegradable polymeric shell that stabilizes the nanoparticle and provides functional groups for biomolecule conjugation, and a targeting ligand for specific binding of target cells. My talk will focus on our recent research in development of nanoparticle systems, including design and characterization of these nanoparticle systems, and their in vitro and in vivo performance.
Zhang, Miqin
Department of Materials Science and Engineering, University of Washington, Seattle, USA
国际会议
International Symposium on Crystal Engineering and Drug Delivery System 2009(2009晶体工程与药物传送系统国际会议)
天津
英文
332
2009-09-05(万方平台首次上网日期,不代表论文的发表时间)