Open-ended MEMS Probes for Dielectric Spectroscopy of Biological Cells at Radio Frequencies
When an electrical current with a low frequency is applied to a cell, the current passes through the outside of the cell. Thus, impedance measurements at low frequencies cannot be used to determine the pathological change of the cellular organelle taking place inside the cell. However, increasing the frequency of the electrical current makes the capacitive impedance of the cell decrease, allowing the electrical current to flow through the cell. This study presents the design and fabrication of a microfluidic device integrated with a coplanar waveguide open-ended MEMS probe for the impedance measurement of the single HeLa cell at radio frequencies. The device includes a PDMS cover with a microchannel and microstructures to capture the single HeLa cell and a conductor-backed CPW fabricated using a silicon chip and two PCB boards. The effects of the substrate on the characteristic impedance of the CBCPW structure were investigated under three conditions by utilizing a Time-Domain Reflectometer (TDR) to obtain the characteristic impedance of the device (46.43 Ω. Finally, impedance measurements using the proposed device and a vector network analyzer (VNA) are demonstrated for sodium chloride solutions with different concentrations, DI water, alcohol, PBS, and a single HeLa cell.
Hsin-Hung Li Jen-Yu Jao Ming-Kun Chen Ling-Sheng Jang Yi-Chu Hsu
Department of Electrical Engineering and Center for Micro/Nano Science and Technology National Cheng Department of Mechanical Engineering,Southern Taiwan University,Taiwan
国际会议
Progress in Electromagnetics Research Symposium 2009(2009年电磁学研究新进展学术研讨会)(PIERS 2009)
北京
英文
789-793
2009-03-23(万方平台首次上网日期,不代表论文的发表时间)