会议专题

Simulation of Motor Cortez Connectivity in Different States

Motor cortex network was represented as a directed graph and implemented as a dynamic system in order to study the mechanisms of impairment and recovery. Complexity was used to express the extent to which a system is both functionally segregated and functionally integrated. Motor cortex network was optimized by pattern search to investigate the change of connectivity in rest, movement and stroke state. The simulation results show that motor areas have stronger connections in movement state. The strength decreases in stroke, which relates to disconnection mode. The intra-hemisphere connections are stronger than others and self-connections are week in either state. It indicates the model can reflect the plasticity of cerebral motor cortex qualitatively according to clinical trials. An understanding of the connectivity changes in cerebral networks following stroke will facilitate the development of novel therapeutic techniques that are based on neurobiological principles and will allow the delivery of specific therapies to appropriately targeted patients suffering from stroke.

motor cortez stroke plasticity complezity connectivity

Dong-Mei Hao Ying Li Ming-Ai Li

School of Life Science and Bioengineering Beijing University of Technology Beijing, China

国际会议

The 2nd International Conference on Bioinformatics and Biomedical Engineering(iCBBE 2008)(第二届生物信息与生物医学工程国际会议)

上海

英文

1765-1768

2008-05-16(万方平台首次上网日期,不代表论文的发表时间)