Characterizations of Jordan derivations on rings: additive maps Jordan derivable at an idempotent
Let A be a unital ring containing a nontrivial idempotent P and φbe an additive map from A into itself. We say an element Z ∈A is a Jordan derivable point of A if φ(A)B+Aφ(B)+ φ(B)A+Bφ(A)=φ(Z) for every A,B∈A with AB+BA=Z. In this paper, we characterize additive maps Jordan derivable at idempotent.
derivation Jordan derivation triangular rings
Runling An Jinchuan Hou
Department of Mathematics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
国际会议
The Third International Workshop on Applied Matriz Theory(第三届国际矩阵分析与应用会议)
杭州
英文
1-3
2009-07-09(万方平台首次上网日期,不代表论文的发表时间)