Idempotent-Presernving Maps on Spaces of Hermitian Matrices
Let C is the field of all complex numbers, R the field of all real numbers. Let Mn(C) be the space of all n×n matrices over C, H0(C) be the set consisting of all n×n Hermitian matrices. A map Φ:H2(C)→H2(C) is said to preserve idempotence if A-λB is idempotent if and only if Φ(A)-λΦ(B) is idempotent for any A,B∈H2(C) and λ∈R. Φis shown to be a map preserving idempotence iffthere exists an invertible matrix P∈M2(C) such that Φ(A)=F1AP or Φ(A)=P1A1P for A∈H2(C) and PPt=I2.
complez field idempotence bermifian matriz
Yuqiu Sheng
Department of Mathematics, Heilongjiang University, Harbin, 150080, PR China
国际会议
The Third International Workshop on Applied Matriz Theory(第三届国际矩阵分析与应用会议)
杭州
英文
265-267
2009-07-09(万方平台首次上网日期,不代表论文的发表时间)