An Eigenvector Convergence Theorem for Jacobi matriz
Let T1,n be an n×n unreduced symmetric tridiagonal matrix. Let T1(k)1,n. be an n×n unreduced symmetric tridiagonal marx sequence and T(k)1,n→T1,n.The eigenvalues of T1,n are λ1<λ2<…<λn and the eigenvalues of T(k)1,n are: λ(k)1<λ(k)2<…λ(k)n.By the property of eigenvalues depend matrix elements continuously, we know λ(k)s→λs.Let Y be an unit eigenvector of T(k)1,n corresponding λ(k)s and z be an unit eigenvector of T1,n corresponding λs, then Y→Z is proved and the upper bond of ‖z - y‖is given.
eigenvalue problem eigenvector Jacobi matriz symmetric tridiagonal matriz
Erxiong Jiang
Department of Mathematics, Shanghai University, Shanghai, P.R.China
国际会议
The Third International Workshop on Applied Matriz Theory(第三届国际矩阵分析与应用会议)
杭州
英文
619-622
2009-07-09(万方平台首次上网日期,不代表论文的发表时间)