会议专题

The eigenpair properties of the preconditioned matriz for general saddle point problems

In this paper, we study the eigenpair properties of the general saddle point problems with preconditioners which contain real parameters. We will give the minimal polynomial and the eigenvectors of these preconditioned matrices, and also show that the eigenvalues of preconditioned matrices are real or preconditioned matrices are positive definite if we choose appropriate parameters.

preconditioners general saddle point problem minimal polynomial eigenvalues parameters

Jian-Lei Li Ting-Zhu Huang

School of Applied Mathematics University of Electronic Science and Technology of China, Chengdu,Sichuan, 610054, P.R.China

国际会议

The Third International Workshop on Applied Matriz Theory(第三届国际矩阵分析与应用会议)

杭州

英文

725-728

2009-07-09(万方平台首次上网日期,不代表论文的发表时间)