On the mazimal eigenvalue of signless P-Laplacian matriz for a graph
The signless P-Laplacian Qp(G) of a function f o V is given by Qp(G)f(v)= Σu∈V,u-v ∑u∈V,u-v (f(v)+ f(u))p-1,where the symbol rP denotes a power function that preserves the sign of t, i.e. tp =sign(t)tP In this paper we investigate the signless P-Laplacian matrix for a connected graph. And we present a bound of the maximal signless P-Laplacian eigenvalue and discuss the corresponding function.
Eigenvalues Closed walk Rank of matriz
Ying Mei
Department of Mathematics, Lishui University, Lishui ,China 323000,Department of Mathematics, Shanghai University, Shanghai,China 200444
国际会议
The Third International Workshop on Applied Matriz Theory(第三届国际矩阵分析与应用会议)
杭州
英文
870-873
2009-07-09(万方平台首次上网日期,不代表论文的发表时间)