A Strict Interlace Theorem
Let A be a n×n real symmetric matrix and B be a (n - 1) × (n - 1) principal matrix of A . If λ1≤λ2 …≤λn lists the eigenvalues of A and μ1≤μ2 <…≤μn-1 are the eiugenvalues of B .It is well known by Cauchys Interlace Theorem that ≤ μ1 ≤λ2≤μ2 ≤…≤μn-1 ≤λn hold. A sufficient and necessary conditions are given when the strict inequalities λ1≤ 1 μ≤λ2 ≤μ2 ≤…≤n-1 ≤λn hold.
Symmetric matriz eigenvalue eigenvector interlace theorem
Ling-Gai Tian Hong-Yan Ji Yan-Hong Guo
Science College,Hebei University of Engineering,Handan 056038,China Science College,Hebei University of ngineering,Handan 056038,China Hanguang Middle Schoole,Handan
国际会议
The Third International Workshop on Applied Matriz Theory(第三届国际矩阵分析与应用会议)
杭州
英文
994-997
2009-07-09(万方平台首次上网日期,不代表论文的发表时间)