The real eigenvalues of signless P-Laplacian matriz for star graph
Let G=(V,E) be a simple connected undirected graph with n vertices and m edges. The signless P-Laplacian Qp(G) of a function f on V is given by Qp(G)f(v)= ∑(u∈V,u-v) (f(v) +f(u))p-1,where the symbol t (p)denotes a power function that preservesthe sign of t,i.e.t(p)=sign(t)·|t|p.A real numberλis called an eigenvalue of Qp(G)if there existe a function f≠0 on V such that λf(v)p-1=∑(f(u)+f(v))p-1 And this function f is called the corresponding eigenfunction to λ In this paper we investigate the real eigenvalues of star graph and theresult shows that the only real eigenvalues of Qp(G)are 0,1and (1+n1/p-1)p-1.
signless P-Laplacian eigenvalues star graph eigenfunction
Guihai Yu Qingwen Wang
Department of Mathematics, Shanghai Universtiy 99 Shangda Road, Shanghai 200444, P.R.China
国际会议
The Third International Workshop on Applied Matriz Theory(第三届国际矩阵分析与应用会议)
杭州
英文
1276-1279
2009-07-09(万方平台首次上网日期,不代表论文的发表时间)