CFD ANALYSIS OF BUBBLING FLUIDIZED BED USING RICE HUSK
Rice is Cultivated in all the main regions of world. The worldwide annual rice production could be 666million tons (www.monstersandcritics.com,2008) for year 2008. The annual production of rice husk is 133.2 million tons considering rice husk being 20% of total paddy production. The average annual energy potential is 1.998 *1012 MJ of rice husk considering 15MJ/kg of rice husk. India has vast resource of rice husk; a renewable source of fuel, which if used effectively would reduce the rate of depletion of fossil energy resources .As a result a new thrust on research and development in boilers bases on rice husk is given to commercialize the concept. CFD is the analysis of systems involving fluid flow, heat transfer and associated phenomena such as chemical reactions by means of computer-based simulation. High quality Computational Fluid dynamics (CFD) is an effective engineering tool for Power Engineering Industry. It can determine detailed flow distributions, temperatures, and pollutant concentrations with excellent accuracy, and without excessive effort by the software user. In the other words it is the science of predicting fluid flow, heat and mass transfer, chemical reactions and related phenomena; and an innovate strategy to conform to regulations and yet stay ahead in today’s competitive power market. This paper is divided into two parts; in first part review of CFD applied to the various types of boilers based on biomass fuels/alternative fuels is presented. In second part CFD analysis of fluidized bed boilers based on rice husk considering the rice husk based furnace has been discussed. The eulerian multiphase model has used for fluidized bed. Fluidized bed has been modeled using Fluent 6.2 commercial code. The effect of numerical influence of bed superheater tubes has also been discussed.
CFD combustion eulerian multiphase model
Ravi Inder Singh S.K.Mohapatra D.Gangacharyulu
Lecturer, Department of Mechanical Engineering, Guru Nanak Dev Engineering College,Ludhiana, Punjab, Professor and Head, Department of Mechanical Engineering, Thapar University,Patiala, Punjab, India Associate Professor and Head, Department of Chemical Engineering, Thapar University, Patiala, Punjab
国际会议
第20届国际流化床燃烧会议(20th International Conference on Fluidized Bed Combustion)
西安
英文
857-863
2009-05-18(万方平台首次上网日期,不代表论文的发表时间)