Fabrication of Silicon-on-Insulator (SOI) and High-k: Materials Using Plasma Technology
Plasma-based technologies such as plasma immersion ion implantation and deposition (PIII&D) are widely used. In addition to the capability to alter the materials surface,novel microelectronic structures can be fabricated. In this invited paper,our recent research activities on the application of plasma technologies to microelectronics are reviewed. Silicon-on-insulator (SOI) is replacing conventional bulk silicon substrates in many high speed,low power microelectronic devices because it possesses advantages such as reduction of parasitic capacitance,excellent sub-threshold slope,elimination of latch up,and resistance to radiation. However,wider applications of SOI in microelectronics are hampered by the self-heating effects caused by the poor thermal conductivity of the buried silicon dioxide layer. We have produced alternative buried insulators such as diamond-like carbon that possesses better thermal conductivity than conventional silicon dioxide using plasma immersion ion implantation and deposition (PIII&D) and successfully fabricated SOI structures with improved thermal stability. The use of low-energy plasma hydrogenation to substitute for the more costly beam-line hydrogen ion implantation in the ion-cutting layer transfer technology is also discussed. In the 45nm node,high-k dielectrics are used as a replacement for SiO2. Plasma immersion ion nitridation is used to produce thin HfO2 films with improved thermal and electrical properties. Co-doping with fluorine and nitrogen is also found to effectively suppress the interfacial compounds between ZrO2 and silicon and the resulting dielectric properties are improved. Recent progress is reviewed in this paper.
Paul K Chu
Department of Physics and Materials Science,City University of Hong Kong Tat Chee Avenue,Kowloon,Hong Kong,China
国际会议
9th International Conference on Solid-State and Integrated-Circuit Technology(第9届固态和集成电路国际会议)
北京
英文
757-760
2008-10-20(万方平台首次上网日期,不代表论文的发表时间)