Tag-based Social Interest Discovery

The success and popularity of social network systems, such as del.icio.us, Facebook, MySpace, and YouTube, have generated many interesting and challenging problems to the research community. Among others, discovering social interests shared by groups of users is very important because it helps to connect people with common interests and encourages people to contribute and share more contents. The main challenge to solving this problem comes from the di-culty of detecting and representing the interest of the users. The existing approaches are all based on the online connections of users and so unable to identify the common interest of users who have no online connections. In this paper, we propose a novel social interest discovery approach based on user-generated tags. Our approach is motivated by the key observation that in a social network, human users tend to use descriptive tags to annotate the contents that they are interested in. Our analysis on a large amount of real-world traces reveals that in general, user-generated tags are consistent with the web content they are attached to, while more concise and closer to the understanding and judgments of human users about the content. Thus, patterns of frequent co-occurrences of user tags can be used to characterize and capture topics of user interests. We have developed an Internet Social Interest Discovery system, ISID, to discover the common user interests and cluster users and their saved URLs by different interest topics. Our evaluation shows that ISID can effctively cluster similar documents by interest topics and discover user communities with common interests no matter if they have any online connections.
delfiicio.us ISID tag social networks
Xin Li Lei Guo Yihong (Eric) Zhao
Yahoo! Inc.701 First Avenue Sunnyvale, CA 94089 Yahoo! Inc. 701 First Avenue Sunnyvale, CA 94089
国际会议
第十七届国际万维网大会(the 17th International World Wide Web Conference)(WWW08)
北京
英文
2008-04-21(万方平台首次上网日期,不代表论文的发表时间)