Automatically Refining the Wikipedia Infobox Ontology
The combined efforts of human volunteers have recently extracted numerous facts fromWikipedia, storing them as machine-harvestable object-attribute-value triples inWikipedia infoboxes. Machine learning systems, such as Kylin, use these infoboxes as training data, accurately extracting even more semantic knowledge from natural language text. But in order to realize the full power of this information, it must be situated in a cleanly-structured ontology. This paper introduces KOG, an autonomous system for refining Wikipedia’s infobox-class ontology towards this end. We cast the problem of ontology refinement as a machine learning problem and solve it using both SVMs and a more powerful joint-inference approach expressed in Markov Logic Networks. We present experiments demonstrating the superiority of the joint-inference approach and evaluating other aspects of our system. Using these techniques, we build a rich ontology, integratingWikipedia’s infobox-class schemata withWordNet. We demonstrate how the resulting ontology may be used to enhance Wikipedia with improved query processing and other features.
Semantic Web Ontology Wikipedia Markov Logic Networks
Fei Wu Daniel S. Weld
Computer Science & Engineering Department,University of Washington, Seattle, WA, USA Computer Science & Engineering Department, University of Washington, Seattle, WA, USA
国际会议
第十七届国际万维网大会(the 17th International World Wide Web Conference)(WWW08)
北京
英文
2008-04-21(万方平台首次上网日期,不代表论文的发表时间)