会议专题

Social and Semantics Analysis Via Non-negative Matrix Factorization

Social media such as Web forum often have dense interactions between user and content where network models are often appropriate for analysis. Joint non-negative matrix factorization model of participation and content data can be viewed as a bipartite graph model between users and media and is proposed for analysis social media. The factorizations allow simultaneous automatic discovery of leaders and sub-communities in the Web forum as well as the core latent topics in the forum. Results on topic detection of Web forums and cluster analysis show that social features are highly effective for forum analysis.

Social Network Analysis latent topic detection latent interest detection

Zhi-li Wu Chi-wa Cheng Chun-hung Li

Computer Science Department Hong Kong Baptist University Computer Science Depar tment Hong Kong Baptist University

国际会议

第十七届国际万维网大会(the 17th International World Wide Web Conference)(WWW08)

北京

英文

2008-04-21(万方平台首次上网日期,不代表论文的发表时间)