Forced Vibration Analysis of Flexible Wind Turbine Blades by Using Assumed Modes Method
The assumed modes method is developed to derive a set of linear differential equations describing the motion of a flexible wind turbine blade and to propose an approach to investigate the forced responses result from various wind excitations. In this work, we have adopted Euler beam theory and considered that the root of the blade is clamped at the rigid hub. And the aerodynamic parameters and forces are determined based on Blade Element Momentum (BEM) theory and quasi-steady airfoil aerodynamics. Numerical calculations show that this method gives good results and can be used for modeling and the forced vibration analysis including the coupling effect of wind-turbine blades, as well as turbo-machinery blades, aircraft propellers or helicopter rotor blades which may be considered as straight non-uniform beams with built-in pre-twist.
assumed modes method wind turbine blade coupled vibration aeroelastic modeling
Kyung-Taek Kim Chong-Won Lee
Center for Noise and Vibration Control (NOVIC),Dept.of Mechanical Engineering,KAIST Science Town,Daejeon,KOREA
国际会议
第六届国际振动工程会议(The 6th International Conference on Vibration Engineering)(ICVE’ 2008)
大连
英文
2008-06-04(万方平台首次上网日期,不代表论文的发表时间)