SMOOTHED PARTICLE HYDRODYNAMICS METHOD IN MODELING OF STRUCTURAL ELEMENTS UNDER HIGH DYNAMIC LOADS
Nowadays, events like severe earthquakes or man-made malicious actions are often taken into account in structural design of critical infrastructures and consequently high dynamic loads are considered in structural analyses. In particular, it is aimed to reproduce large displacements fields, dynamic fracture mechanisms (fragmentations, etc.) and high stress concentrations. Classical numerical methods, like Finite Element Method (FEM), may be inadequate to model the mechanical behavior of structural elements under such actions. In fact,high deformation gradients and unforeseeable failure mechanisms can represent critical aspects for FEM methods. As a consequence, several meshless methods, originally developed for fluid-dynamics, have been recently investigated in order to adapt them to solid continuum mechanics.Smoothed Particle Hydrodynamcs (SPH) method, belonging to meshless methods, is here described. Classical numerical formulations are presented and the basic idea of the SPH approach is described. Then, the attention is focused on the expressions used to approximate derivatives, since these formulations play a fundamental role in developing numerical framework to reproduce dynamic problems. Deficiencies and criticalities related to such a point are described and the most common improvements proposed in literature are summarized. Then, an original approach is presented, based on a direct control of the convergence error. Performances of the proposed expressions are outlined via numerical tests. In particular second order of convergence in treating second derivatives is outlined and numerical spectra are derived and described, comparing results from the proposed formulation with those from other SPH methods and from linear FEM.
Severe dynamic conditions Numerical methods Meshless methods Smoothed Particle Hydrodynamics
D. Asprone F. Auricchio A. Reali G. Sangalli A. Prota G. Manfredi
Department of Structural Engineering , University of Naples ? Federico Ⅱ,Via Claudio 21, 80125 Nap Department of Structural Mechanics - University of Pavia, Italy Department of Mathematics - University of Pavia, Italy
国际会议
14th World Conference on Earthquake Engineering(第十四届国际地震工程会议)
北京
英文
2008-10-12(万方平台首次上网日期,不代表论文的发表时间)