EMPIRICAL GROUND MOTION MODEL FOR SHALLOW CRUSTAL EARTHQUAKES IN ACTIVE TECTONIC ENVIRONMENTS DEVELOPED FOR THE NGA PROJECT
We present a new empirical ground motion model for PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01-10 s. The model was developed as part of the PEER Next Generation Attenuation (NGA) project. We used a subset of the PEER NGA database for which we excluded recordings and earthquakes that were believed to be inappropriate for estimating free-field ground motions from shallow earthquake mainshocks in active tectonic regimes. We developed relations for both the median and standard deviation of the geometric mean horizontal component of ground motion that we consider to be valid for magnitudes ranging from 4.0 up to 7.5-8.5 (depending on fault mechanism) and distances ranging from 0-200 km. The model explicitly includes the effects of magnitude saturation, magnitude-dependent attenuation, style of faulting, rupture depth, hanging-wall geometry, linear and nonlinear site response, 3-D basin response, and inter-event and intra-event variability. Soil nonlinearity causes the intra-event standard deviation to depend on the amplitude of PGA on reference rock rather than on magnitude, which leads to a decrease in aleatory uncertainty at high levels of ground shaking for sites located on soil.
Attenuation Ground Motion Prediction Response Spectra Active Tectonic Regions
K.W.Campbell Y.Bozorgnia
Vice President,ABS Consulting (EQECAT),Beaverton,Oregon,USA Associate Director,PEER,University of California,Berkeley,California,USA
国际会议
14th World Conference on Earthquake Engineering(第十四届国际地震工程会议)
北京
英文
2008-10-12(万方平台首次上网日期,不代表论文的发表时间)