会议专题

MULTI-OBJECTIVE OPTIMIZATION FOR A NOVEL ELECTROSTATIC-FEEDBACK MICRO-SENSOR BASED ON GENETIC ALGORITHM

In this paper, we present the multi-objective optimization for an entire microsystem, a novel capacitive electrostatic feedback accelerometer. From the energy relations of the coupled electrostatic-field, the dynamic model of the system is constructed. Aiming at the global performance, a multi-objective optimization model, where sensitivity, resolution and damping resonant frequency are selected as objectives, is established based on the concept of multidisciplinary design optimization (MDO). Genetic algorithm (GA) is used to solve this problem, and compared with a traditional optimization approach, sequence quadratic programming (SQP). Both the two algorithms can achieve our aim commendably, and the optimal solution given by GA is more satisfied. The research provides us a good foundation to develop the stochastic and implicit parallel properties of GA to obtain Pareto optimal solutions.

Yongquan Wang Hualing Chen Zhiying Ou Xueming He

School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China

国际会议

2007年微纳系统集成及其商业化应用国际学术会议(2007 International Conference & Exhibition on Integration and Commercialization of Micro and Nano-Systems)

海南三亚

英文

2007-01-10(万方平台首次上网日期,不代表论文的发表时间)