Detection and Remediation of Switch Faults on a Fault Tolerant Permanent Magnet Motor Drive with Redundancy
Fault-tolerant motor drives are becoming more important in safety critical applications. Using a special motor design and an appropriate inverter topology, brushless permanent magnet AC motor drives can have a fault-tolerant capability. This paper considers a dual motor drive system on a common shaft to introduce redundancy. The paper provides a systematic classification for the potential electrical faults which may occur in a real motor drive. In the paper, the switch and winding short circuit fault detection and identification methods are studied and experimental results are presented. In addition, the effects of switch faults on the phase currents and output torque are discussed, and remedial strategies for these faults are proposed. Furthermore, it was also demonstrated using simulation results that the proposed remedial strategies can compensate for the loss of torque due to the switch faults and can keep the peak-to-peak torque ripple factor comparable to healthy operation of the drive.
Jingwei ZHU Nesimi ERTUGRUL Wen Liang SOONG
School of Electrical and Electronic Engineering The University of Adelaide, Adelaide, Australia, SA 5005
国际会议
2nd IEEE Conference on Industrial Electronics and Applications(ICIEA 2007)(第二届IEEE工业电子与应用国际会议)
哈尔滨
英文
2007-05-23(万方平台首次上网日期,不代表论文的发表时间)