会议专题

A Clustering Algorithm for Multitarget State Extraction Based on Probability Hypotheses Density

This paper proposes a clustering algorithm for multitarget state extraction based on Finite Mixture Models (FMM) and Probability Hypotheses Density (PHD). The PHD gives the number of targets. The FMM clustering algorithm extracts multitarget states. The FMM parameters are derived by Gibbs sampling under the Bayesian framework, besides, the algorithm join the prior information, thus the tracking property will be more accurate.

PHD Clustering of Gaussian mixture model Finite mixture models Gibbs sampling Bayesian

Weifeng Liu Chongzhao Han Feng Lian

Electronic Information Engr Xian Jiaotong University Xian, Shaan xi 710049,P.R.China

国际会议

The International Colloquium on Onformation Fusion 2007(2007年国际信息融合研讨会)

西安

英文

204-212

2007-08-22(万方平台首次上网日期,不代表论文的发表时间)