A Clustering Algorithm for Multitarget State Extraction Based on Probability Hypotheses Density
This paper proposes a clustering algorithm for multitarget state extraction based on Finite Mixture Models (FMM) and Probability Hypotheses Density (PHD). The PHD gives the number of targets. The FMM clustering algorithm extracts multitarget states. The FMM parameters are derived by Gibbs sampling under the Bayesian framework, besides, the algorithm join the prior information, thus the tracking property will be more accurate.
PHD Clustering of Gaussian mixture model Finite mixture models Gibbs sampling Bayesian
Weifeng Liu Chongzhao Han Feng Lian
Electronic Information Engr Xian Jiaotong University Xian, Shaan xi 710049,P.R.China
国际会议
The International Colloquium on Onformation Fusion 2007(2007年国际信息融合研讨会)
西安
英文
204-212
2007-08-22(万方平台首次上网日期,不代表论文的发表时间)