会议专题

Microstructures of rapidly solidified hypereutectic Al-Si alloy with low-titanium content

In the present work, rapidly solidified alloys strips with Al-0.24Ti and Al-21Si-0.24Ti(in wt.%) were prepared by single roller melt-spinning method. The microstructures, phase and morphology characteristics of the resultant strips were characterized by means of scanning electron microscopy (SEM),transmission electric microscopy (TEM) and XRD technique. The results show that the grains have been refined after rapid solidification processing, and the micro-nanocrystalline grain are formed. The morphology characteristics can be changed. The microstructures of Al-0.24Ti alloys strip are micro-nanostructure α-Al solid solutions which are similar with granular or nodular, the corresponding SAD pattern is rings, it presents characteristic of polycrystal; Compared with equilibrium solidification, the microstructures of hypereutectic Al-Si alloy are changed obviously. They are composed of primary micro-nanostructure α-Al supersaturated solid solution and nanocrystal granular (α+Si) eutectic which set in the supersaturated solid solution. The nucleation and growth of primary silicon are suppressed and primary silicon can not precipitate, meanwhile, α-Al phase is nucleated which prior to eutectic, therefore the microstructures become into the metastable state. The mechanism of the formation for microstructures of melt-spinning alloys has also been discussed.

rapid solidification microstructure micro-nanocrystalline grain amorphous polycrystal

Aiqin WANG Jingpei XIE Zhongxia LIU Jiwen LI Wenyan WANG Shuqing YAN

The Key Laboratory of Material physics of Ministry of Education, Zhengzhou University, Zhengzhou 450 The School of Mater.Sci.& Eng.Henan University of Science and Technology, Luoyang 471003, China The Key Laboratory of Material physics of Ministry of Education, Zhengzhou University, Zhengzhou 450

国际会议

The Fifth International Conference on Physical and Numerical Simulation of Materials Processing(第五届材料与热加工物理模拟及数值模拟国际会议)

郑州

英文

2007-10-23(万方平台首次上网日期,不代表论文的发表时间)