会议专题

Finite element analysis of optimum back pressure during equal channel angular pressing

Equal channel angular pressing (ECAP) is one of the most promising processes to fabricate ultra-fine grained materials. The material deformation is affected by die geometry, material behavior, friction and back pressure. The optimum back pressure for 1100Al during ECAP was studied. The effect of back pressure on deformation behavior, effective strain and deformation load were analyzed by using finite element software. The results show that the corner gap between the billet and the die in the external part of the deformation zone decreases and even disappears with the increase of back pressure, which can produce more uniform and larger strain in the billet. The deformation load enhances with the increase of back pressure. From the simulation results, it can be found out that the optimum back pressure for 1100Al pressed in the die of Φ=90° is about 30MPa.

equal channel angular pressing finite element analysis back pressure strain distribution

Feng-jian SHI Lei-gang WANG

Provincial Key Lab of Advanced Welding Technology, Jiangsu University of Science and Technology, Zhe School of Material Science and Engineering, JiangSu University, Zhenjiang 212013, PR China

国际会议

The Fifth International Conference on Physical and Numerical Simulation of Materials Processing(第五届材料与热加工物理模拟及数值模拟国际会议)

郑州

英文

2007-10-23(万方平台首次上网日期,不代表论文的发表时间)