会议专题

Understanding Hydrogen Adsorption in Metal-Organic Frameworks with Open Metal Sites: A Computational Study

Recent experimental investigations show that the open metal sites may have a favorable impact on the hydrogen adsorption capacity of metal-organic frameworks (MOFs); however, no definite evidence has been obtained to date and little is known on the interactions between hydrogen and the pore walls of this kind of MOFs. In this work, a combined grand canonical Monte Carlo simulation and density functional theory calculation is performed on the adsorption of hydrogen in MOF-505. a recently synthesized MOF with open metal sites, to provide insight into molecular-level details of the underlying mechanisms. This work shows that metal-oxygen clusters are preferential adsorption sites for hydrogen, and the strongest adsorption of hydrogen is found in the directions of coordinatively unsaturated open metal sites, providing evidence that the open metal sites have a favorable impact on the hydrogen sorption capacity of MOFs. The storage capacity of hydrogen of MOF-505 at room temperature and moderate pressures is predicted to be low, in agreement with the outcome for hydrogen physisorption in other porous materials.

Qingyuan Yang Chongli Zhong

Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

国际会议

The 3rd International Conference of Molecular Simulations and Applied Informatics Technologies(第三届国际分子模拟与信息技术应用学术会议)

杭州

英文

724-727

2007-04-01(万方平台首次上网日期,不代表论文的发表时间)