Nonlinear analysis of composite and FGM shells using tensor-based finite elements
A tensor-based finite element model with high-order expansion is developed for the linear and geometrically nonlinear of functionally graded shells. A two-phase functionally graded shell where die properties are assumed to vary through the thickness of the shell is considered. The formulation is based on the first-order shell theory with seven parameters with exact nonlinear deformations and under the framework of the Lagrangian description. High-order elements with Lagrangian interpolations are used to avoid membrane and shear locking. Numerical solutions are presented for some benchmark problems and results are compared with those found in the literature for isotropic, laminated and functionally graded plates and shells. The results are found to be accurate and show the validity of the developed finite element model. Moreover, the simplicity of this approach makes it attractive for applications in contact mechanics and damage propagation in shells.
J. N. Reddy R. A. Arciniega
Texas A&M University, College Station, TX 77843-3123, USA
国际会议
The 5th International Conference on Nonlinear Mechanics(第五届国际非线性力学会议)
上海
英文
75-90
2007-06-11(万方平台首次上网日期,不代表论文的发表时间)