Algebraic Constructions of Nonbinary Quasi-Cyclic LDPC Codes
In the late 1950s and early 1960s, finite fields were successfully used to construct linear block codes, especially cyclic codes, with large minimum distances for correcting random errors with algebraic decoding, such as Bose-Chaudhuri-Hocqenghem (BCH) and Reed-Solomon (RS) codes. Recently it has been shown that finite fields can also be used successfully to construct binary quasi-cyclic (QC)-LDPC codes that perform very well not only over the AWGN channel but also over the binary erasure channel with iterative decoding, besides being efficiently encodable. This paper is concerned with constructions of nonbinary QC-LDPC codes based on finite fields.
Shu Lin Shumei Song Ying Y.Tai Lan Lan Lingqi Zeng
Department of Electrical & Computer Engineering University of California, Davis Davis, CA 95616
国际会议
2006 International Conference on Communications,Circuits and Systems(第四届国际通信、电路与系统学术会议)
广西桂林
英文
1303-1308
2006-06-25(万方平台首次上网日期,不代表论文的发表时间)