差分隐私保护BIRCH算法
针对现有的层次聚类算法可能存在的隐私数据泄露问题,提出一个面向大规模数据集,且有效保护用户隐私的差分隐私BIRCH算法DP-BIRCH.DP-BIRCH算法依据差分隐私模型并借鉴概率分配思想,基于误差最小原则来调整隐私预算,采用异方差加噪方式,对待发布的CF树加入Laplace噪音.为进一步提高算法的查询精度及可用性,在DP-BIRCH算法的基础上,提出FP-BIRCH算法,同时采用线性回归及迭代运算等方法,解决了DP-BIRCH算法中存在的不一致约束性问题.实验采用两组真实数据集,在不同的隐私预算下,对DP-BIRCH算法和FP-BIRCH算法发布的DP-CF树与FP-CF树进行查询误差比较.实验结果表明,相比DP-BIRCH算法,所提出的FP-BIRCH算法有效可行,且查询精度更高.
差分隐私保护 聚类算法 查询概率 隐私预算分配 一致性检验
张瑶 李蜀瑜 李泽堃
陕西师范大学计算机科学学院,西安710119
国内会议
济南
中文
140-144
2017-11-19(万方平台首次上网日期,不代表论文的发表时间)