会议专题

ECOLE 2018 Tutorial机器学习中的优化问题简介

Artificial intelligence systems,machine learning improves system performance automatically from experience.provides tools for intelligent data analysis.learning task category:supervised learning、partially supervised learning、reinforcement learning、unsupervised learning.a typical formulation:value function approximation directly find the parameters of the policy.supervised/partially supervised learning.machine learning=representation + evaluation + optimization.highly complex functions vs. gradient-based methods,relax to convex problems,convex loss functions are noise-sensitive ”Long and Servedio, MLJ”OO”,convex regularizations are not consistent ”Fan and Li, JASA”O1”,hard to be relaxed.

机器学习 优化问题 监督学习

俞扬

南京大学 软件新技术国家重点实验室 计算机科学与技术系|人工智能学院

国内会议

第五届中国演化计算与学习研讨会(ECOLE 2018)

广州

中文

1-54

2018-05-18(万方平台首次上网日期,不代表论文的发表时间)