会议专题

弱监督机器学习范式

Turn data into information and knowledge,so as to support sound decision making.Key Techniques:Cloud Computing,Managing Data,Crowdsourcing,Collecting Data,Machine Learning,Analyzing Data.Input Space,represented by a single instance (feature vector) characterizing its properties;Output Space,associated with a single label characterizing its semantics.In practice,we usually have to learn with weak supermsion.Semi-Supervised Learning (SSL),Multi-Label Learning(MLL).Learning with Weak Supervision: Framework+Model+Utilization.

弱监督机器学习 云计算 数据管理

张敏灵

国内会议

2017中国人工智能大会

杭州

中文

1-15

2017-07-01(万方平台首次上网日期,不代表论文的发表时间)