演化Pareto优化与子集选择学习

Approximation analysis of Pareto optimization,proposed an analysis framework,can be the best approximation algorithm,Apply to subset selection,selective ensemble problem: Pareto ensemble pruning,sparse regression problem: Pareto sparse regression,Well parallelizable algorithm,With theoretical justifications, we aim at solving learningproblems better.With increasing number of processors, the number of iterations can becontinuously reduced, eventually to a constant.
演化计算 优化算法 子集选择学习
俞扬
南京大学 软件新技术国家重点实验室 机器学习与数据挖掘研究所
国内会议
上海
中文
1-53
2016-05-27(万方平台首次上网日期,不代表论文的发表时间)