会议专题

演化Pareto优化与子集选择学习

Approximation analysis of Pareto optimization,proposed an analysis framework,can be the best approximation algorithm,Apply to subset selection,selective ensemble problem: Pareto ensemble pruning,sparse regression problem: Pareto sparse regression,Well parallelizable algorithm,With theoretical justifications, we aim at solving learningproblems better.With increasing number of processors, the number of iterations can becontinuously reduced, eventually to a constant.

演化计算 优化算法 子集选择学习

俞扬

南京大学 软件新技术国家重点实验室 机器学习与数据挖掘研究所

国内会议

第三届中国演化计算与学习研讨会(ECOLE 2016)

上海

中文

1-53

2016-05-27(万方平台首次上网日期,不代表论文的发表时间)