限定领域口语对话系统中的商品属性抽取
按功能或问题域划分,商品属性抽取(product feature mining)在限定领域的对话系统中属于口语语言理解(spoken language understanding,SLU)的范畴.商品属性抽取任务只关注自然文本中描述商品属性的某一特定部分,它是细粒度观点抽取(fine-grained opinion mining)的一个重要的子任务.现有的商品属性抽取技术主要建立在商品的评论语料上,本文以手机导购对话系统为背景,将商品属性抽取应用到整个对话过程中,增强对话系统应答的针对性.使用基于CBOW(continuous bag of words)语言模型的word2vector(W2V)对词汇的语义层面建模,提出一个针对口语对话的指数型变长静态窗口特征表达框架,捕捉不同距离词语组合的重要特征,使用卷积神经网络(convolutional neural network,CNN)结合词汇的语义和上下文层面对口语对话语料中的商品属性进行抽取.词嵌入模型给出了当前词和所给定的属性类别是否存在相关性的证据,而所提出的特征表达框架则是为了解决一词多义的问题.实验结果表明,本文提出的抽取方法取得了优于研究进展中方法的商品属性识别效果.
商品属性抽取 词向量 卷积神经网络 特征表达 口语对话系统
叶大枢 黄沛杰 邓振鹏 黄强
华南农业大学数学与信息学院,广东广州510642
国内会议
第十五届全国计算语言学学术会议(CCL2016)暨第四届基于自然标注大数据的自然语言处理国际学术研讨会(NLP-NABD-2016)
烟台
中文
1-11
2016-10-14(万方平台首次上网日期,不代表论文的发表时间)