Improving Chinese Semantic Role Labeling with English Proposition Bank
Most researches to SRL focus on English.It is still a challenge to improve the SRL performance of other language.In this paper,we introduce a two-pass approach to do Chinese SRL with a Recurrent Neural Network(RNN)model.We use English Proposition Bank(EPB)to improve the performance of Chinese SRL.Experimental result shows a significant improvement over the state-of-the-art methods on Chinese Proposition Bank(CPB),which reaches 78.39%F1 score.
Chinese semantic role labeling two-pass approach Recurrent Neural Network English resource
Tianshi Li Qi Li BaoBao Chang
Key Laboratory of Computational Linguistics,Ministry of Education,School of Electronics Engineering Collaborative Innovation Center for Language Ability,Xuzhou 221009,China
国内会议
第十五届全国计算语言学学术会议(CCL2016)暨第四届基于自然标注大数据的自然语言处理国际学术研讨会(NLP-NABD-2016)
烟台
英文
1-9
2016-10-14(万方平台首次上网日期,不代表论文的发表时间)